|
In six-dimensional geometry, a truncated 6-simplex is a convex uniform 6-polytope, being a truncation of the regular 6-simplex. There are unique 3 degrees of truncation. Vertices of the truncation 6-simplex are located as pairs on the edge of the 6-simplex. Vertices of the bitruncated 6-simplex are located on the triangular faces of the 6-simplex. Vertices of the tritruncated 6-simplex are located inside the tetrahedral cells of the 6-simplex. == Truncated 6-simplex == 30px 7 t 30px |- |bgcolor=#e7dcc3|4-faces||63: 42 30px 21 t 30px |- |bgcolor=#e7dcc3|Cells||140: 105 30px 35 t 30px |- |bgcolor=#e7dcc3|Faces||175: 140 35 |- |bgcolor=#e7dcc3|Edges||126 |- |bgcolor=#e7dcc3|Vertices||42 |- |bgcolor=#e7dcc3|Vertex figure||Elongated 5-cell pyramid |- |bgcolor=#e7dcc3|Coxeter group||A6, (), order 5040 |- |bgcolor=#e7dcc3|Dual||? |- |bgcolor=#e7dcc3|Properties||convex |} 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Truncated 6-simplexes」の詳細全文を読む スポンサード リンク
|